Control of a Single-Phase Claw-Pole Machine
Alexandre Grandremy

Motivation
- A power electronic speed controlled driver for a single-phase claw-pole machine is needed.
- The goal of this masters thesis is to design
 - the power electronic converter,
 - the signal electronics and
 - the code for a possible micro processor.

Development of control strategy and circuitry
- Selection and implementation of position detection
- Selection and development of starting sequence
- Control routine for the high speed operation
 - Delay compensation
 - Shaping of current waveform
- Simulation models are made in Simulink and partly tested in dSpace
- Practical control algorithm written in C-code

Experimental work
- Development and testing of electronic circuitry
- Verification of control strategies

Static characteristics
- Measurement of torque as a function of position and current
- Analysis of starting capability
 - Friction, cogging, etc
 - Resting positions
 - Starting torque and energy

Simulations
- Development of machine model
- Development of drive system
 - Brushless DC-drive (BLDC) with maximum current observation
 - Sampled current control (SCC) with PE regulator and PWM
 - Direct current control (DCC) with hysteresis regulator
- Theoretical evaluation of control strategies

Dynamic characteristics
- Estimation of machine output as a function of speed

Accomplishments
- Developed and verified control strategy for starting and running the motor in a controlled direction and at a controlled speed