
Embedding Mono code in unmanaged
applications on GNU/Linux

LTH School of Engineering at Campus Helsingborg

Department of Computer Science

Bachelor thesis:
Martin Arvidsson
Viktor Hermansson

c© Copyright Martin Arvidsson, Viktor Hermansson

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2011

Abstract

In today’s society more and more work is carried out with the help of dif-
ferent computer systems. To benefit from the data, integration between
the systems is needed. Saab has developed a solution to the problem, by
the name WISE. With a modular design costs can be minimized, because
a new integration does not necessarily require new software, but can be
achieved with configuration of an existing module. (a so-called driver).

By supporting languages on a higher level than C++, development of
new drivers can be speeded up to further decrease the costs. As a first
step C# support was implemented with the help of C++/CLI. Such a
solution is constrained to the Windows platform. To be able to meet
the customers need for Linux compatibility this project was initiated, to
create a wrapper driver with the help of Mono.

In the report it is shown that it is fully possible to create a working
embedding of C# with the Mono runtime. The documentation of the
limited embedding-API is however inadequate, this resulted in us having
to investigate the functionality by creating small test cases and read the
source code to see how function calls behaved. We have implemented
a working wrapper driver which with the help of Mono enables WISE
to start up and call C# applications. To verify the functionality in the
wrapper driver, we have implemented a test driver which creates all data
types known by WISE and sends them between C# and WISE. To test
our wrapper driver in a real scenario, we have developed a C# chat
driver.

Keywords: C#, Mono-Project, Marshalling, Embedding, WISE

Sammanfattning

I dagens samhälle utförs allt mer av arbete via olika datasystem. För att
kunna dra nytta av all data behövs integration mellan systemen. Saab
har tillverkat en lösning, vid namn WISE p̊a detta problem. Genom en
modulär design kan kostnaderna h̊allas nere, d̊a en ny integration inte
nödvändigvis behöver ny programvara utan löses via en konfiguration av
befintlig modul (s.k. driver).

Genom att ge stöd för spr̊ak p̊a högre niv̊a än C++, kan utvecklingen av
drivers snabbas upp och p̊a s̊a sätt ytterliggare krympa kostnaderna. Som
ett första steg implementerades stöd för C# m.h.a. C++/CLI. En s̊adan
lösning medför att koden är l̊ast till Windows-plattformen. För att kunna
tillgodose kundernas behov av Linux-kompatibilitet p̊abörjades det här
projektet, att skapa en wrapper-driver m.h.a. Mono istället.

I rapporten kan man läsa att det är fullt möjligt att skapa en fungerande
inbäddning av Mono-runtimen. Dock är dokumentationen till, det
begränsade embedding-API:et bristfällig, vilket resulterade i att vi fick
med hjälp av enkla testfall undersöka hur funktioner betedde sig. Vi
har implementerat en fungerande wrapper-driver som med hjälp av
Mono-biblioteket möjliggör att WISE kan starta upp och kalla p̊a C#-
applikationer. För att verifiera att wrapper-drivern fungerar som den ska
har vi implementerat en test-driver som skapar upp alla de datatyper
WISE har stöd för och skickar dem mellan C# och WISE. Vi har ocks̊a
utvecklat en C# chat-driver för att testa ett verkligt scenario med hur
wrapper-drivern är tänkt att användas i framtiden.

Nyckelord: C#, Mono-projektet, Marshalling, Inbäddning, WISE

Contents

1 Introduction 1

1.1 Background . 1

1.2 Scope . 2

1.2.1 Goals . 2

1.2.2 Scope Details . 3

1.2.3 Acceptance requirements 3

1.3 Method . 3

1.3.1 Phase 1 . 3

1.3.2 Phase 2 . 4

1.3.3 Phase 3 . 4

1.3.4 Source criticism 4

2 WISE Connectivity 6

2.1 WISE vs. conventional integration 6

2.2 WISE components . 7

3 Microsoft .NET Framework 9

3.1 Some components in .NET 9

3.2 Comparison between C# and Java 10

3.2.1 Some examples of differences in syntax 10

3.2.2 Some useful features missing in Java 10

4 Mono 13

4.1 Licensing . 13

4.2 Applications using Mono 13

4.3 .NET compatibility . 14

4.3.1 MoMA-tool . 14

5 Embedding Mono 15

5.1 Compiling and linking 16

5.1.1 Mono 2.8+ . 16

5.2 Initializing the runtime 16

5.3 Calling managed code 17

5.4 Exposing C code to the managed world 17

6 WISE with Mono 18

6.1 Design . 18

6.2 Marshalling . 22

6.2.1 Native data types 22

6.2.2 String . 23

6.2.3 DateTime . 23

6.2.4 Vec3 . 24

6.2.5 Blob . 25

6.2.6 Union . 25

6.2.7 Lists . 26

6.2.8 Dictionaries . 26

6.2.9 AttributeGroups 27

6.3 Templates . 28

6.4 Evaluation of Mono versions 29

6.5 Garbage collection . 30

6.5.1 Description of the Mono-GC 30

6.5.2 API . 30

6.5.3 The wrapper driver implementation 31

6.6 Threads . 32

6.7 Mono in multiple driver environments 32

6.8 Quality assurance . 32

6.8.1 Test-driver . 32

6.8.2 WISE Test Tool 33

6.8.3 Chat-driver . 33

6.9 Platform/Deployment 33

6.9.1 Deployment . 33

6.9.2 64-bit systems . 34

7 Conclusion 35

7.1 Thesis reflection . 35

8 Future development 37

8.1 Potential performance improvements 37

8.2 New methods in the sink 37

8.3 Design improvements . 38

8.4 Upcoming mono versions 38

References 39

Dictionary 41

1 Introduction

1.1 Background

Saab AB is a Swedish company with headquaters in Stockholm. The
company’s main focus is military defence and civil security. Saab was
founded in 1937 and was originally an aeroplane manufacturer. Today
Saab has 12,500 employees located on all continets with sales amount to
around SEK 24 billion, where development and research acounts for 20
percent of sales.[1]

Saab is divided into five bussiness areas: Aeronautics, Dynamics, Elec-
tronic Defence Systems, Security & Defence Solutions and Support &
Services. Aeronautics researches and builds airbourne crafts. Dynam-
ics offers combat weapons as missiles and torpedoes. Electronic Defence
Systems offers systems for surveilance and threat detection. Security &
Defence Solutions develops technology to protect propety and individu-
als. Support & Services provides support for Saab products.[1]

The office in Helsingborg where this thesis has been written is in the area
of Security & Defence Solutions. The subdivision located in Helsingborg
is called Saab Training Systems and works with training for both mili-
tary and civil purposes. They develop software which improves training
scenarios, both virtual and real life. Both Saab Training Systems and
Saab will further be refered to as Saab in this thesis.

Saab has developed an integration platform called WISE (Widely Inte-
grated Systems Environment) which enables systems to exchange infor-
mation without modification of the communicating systems. WISE can
be used to have many different virtual training simulators work together,
eg. a tank simulator can communicate with a helicopter simulator. A
system communicate with WISE via a driver. The driver translates mes-
sages to and from WISE. For convenience it is desirable to be able to
write this driver in any chosen language. WISE on Windows have C#
driver compatibility but customers increasingly inquire for C# Linux
compatibility and to meet the customers needs, Saab need to develop
new wrapper drivers to enable drivers to be written in C# for the Linux
platform.

1

1.2 Scope

1.2.1 Goals

The main goal is to develop a wrapper driver to WISE which enables fur-
ther driver development in C# as well as documenting the compatibility
between .NET and, the open source implementation, Mono. To test if
the wrapper works properly a chat and test driver is designed.

Main goals for the wrapper driver are (listed in priority):

1. Correctness (Load and convert data to C# drivers)

2. Easily managed code

3. Driver compatibility with .NET

4. Performance (speed of execution)

Goals for the test driver:

• Test functionality in the wrapper to assure the first goal of the
wrapper driver.

Goals for the chat driver:

• Get an understanding of how customers interact with the WISE
API.

• Test the wrapper with a real application.

Goals for the compatibility documentation:

• Give Saab an insight in the current and future status of Mono.

The purpose of the project is to lower the cost when developing new
drivers for WISE.

2

1.2.2 Scope Details

The project has a target machine and support for other systems is not
required. The target machine is a 32 bit Ubuntu 10.04 system with
GNU Compiler Collection (GCC) version 4.3.2. The GCC version is
a requirement from WISE. What Mono version to use is a result from
the testing in this project but the latest long-term supported version
(2.6.7) was initially chosen. Even though Mono supports other languages
than C# no other languages have been considered, and all references to
managed code refers to C# code in this document.

Despite that the project has a target machine, the wrapper driver is
frequently tested in Windows XP and reflections about this system is
also considered in this document.

1.2.3 Acceptance requirements

The requirements from Saab are:

• Create a wrapper driver that can load C# drivers.

• Create a chat driver in C#.

• Create a test driver in C#.

• Document differences between Mono and .NET.

1.3 Method

The workload is divided into three different phases. The work will not
be isolated to the specific phase and probably alternate between a couple
of phases during the project’s timespan.

1.3.1 Phase 1

This is an information gathering phase. Information is gathered in two
forms by reading documentation and experimenting with short program

3

snippets. The focus lays on the different possibilities to communicate
between managed and unmanaged code. We investigate both extending
C# code with unmanaged libraries and unmanaged programs with a C#
extension.

1.3.2 Phase 2

In this phase the focus is on WISE, how WISE works and how to embed
Mono in this environment. In the beginning, Saab is hosting a course
in driver development to get a kick-start on the phase. This is followed
by the actual wrapper-driver implementation. When this is done two
C#-drivers are constructed, one test-driver and a chat-driver. The test-
driver is for extra validation of functionality and the chat-driver is a
proof-of-concept for the customer, Saab. The development model will
be an iterative model where we will alternate between pair programming
and single programming depending on the task.

1.3.3 Phase 3

The last phase is partially focused on quality assurance and partial doc-
umentation. More testing will be done than in the second phase, some
newly discovered bugs will be squashed. The experiences from earlier
stages are documented in this report for further development and may
be of assistance in similar projects. Another goal in this phase is to
document the differences between Mono and Microsoft .NET.

1.3.4 Source criticism

For the information in this thesis we have tried to find as reliable sources
as possible. Information about Saab, Microsoft and .NET is used from
respective companies own web pages and we assume this information
is correct. Most information about Mono is taken from Mono’s official
web page (http://mono-project.org) as well as the older page (http:
//go-mono.com). The information on the older site could be outdated
but another more reliable source about Mono is not available. Two of
our sources ([11], [20]) are from a forum on the Internet, we have carfully
chosen who to cite, the former is from a person who we do not know about

4

http://mono-project.org
http://go-mono.com
http://go-mono.com

and can not prove his knowledge but he seems to know what he’s talking
about. The latter is from Miguel de Icaza, one of the main developers of
Mono, we assume he is a reliable source.

5

2 WISE Connectivity

WISE is a software suite and a generic integration platform that allows
connection of systems or applications into a common environment and
creates an information flow between them.[2]

2.1 WISE vs. conventional integration

Integration between systems can be very problematic and time consum-
ing. To get two systems to communicate with each other, one of them has
to be modified. For every system joining the connection the complexity
of the integration drasticly increases.

Figure 1: Conventional integration.

6

In conventional integration between systems the integration takes place
in the integrating systems. This means they have to be modified to be
able to communicate with each other. With WISE the integration point
is inside the WISE runtime with a WISE driver for each system. The
WISE driver translates the application specific messages to a common
information model, allowing the system to communicate with WISE in
its native language thus eliminating the need for modifying the system.
Once a driver is written for a specific application protocol, it can be
reused in other systems using this application.

Figure 2: WISE integration.

2.2 WISE components

WISE is an environtment which consists of different applications and
components, they are:

7

CoDE WISE Connectivity Designer Edition (CoDE) is the application
where connections between systems are configured. A database
to each system is created here as well as the connection between
different databases.

CoRE WISE Connectivity Runtime Edition (CoRE) is the application
used when running a connection between two or more systems in
WISE.

Test Tool WISE Test Tool is used to verify the information flow be-
tween systems. Test Tool can be used to create new object and
events in one system and check if they are correctly distributed to
the other systems.

Connectivity SDK The WISE Connectivity SDK is used by program-
mers when creating new drivers for WISE. The SDK includes
project templates for Microsoft Visual Studio so programmers gets
a correctly configured project right away.

8

3 Microsoft .NET Framework

The .NET Framework is a Microsoft technology for Microsoft operating
systems. The idea is to compile application code into a Common Inter-
mediate Language (CIL) which is interpreted by the Common Language
Runtime (CLR) during execution. Applications can be written in any of
the .NET languages and because of the CIL link to each other without
restrictions.[3]

The .NET Framework has two main components: the Common Language
Runtime and the .NET Framework Class Library. The CLR is an exe-
cution environment where CIL code is executed in a similar way as Java
is executed in the Java Virtual Machine. Code targeting this runtime is
referred to as managed code. Native or unmanaged code refers to code
compiled into architecture specific binary code.[4]

The Class Library is an object-oriented collection of reusable types, which
speeds up and simplifies the development process of new applications.

3.1 Some components in .NET

ADO.NET
ADO.NET with its subcomponents Entity Framework (ET) and
Language-Integrated Query (LINQ) serves as an abstraction layer be-
tween the application-code and the database. With this layer it is possi-
ble to change the underlaying database manager system without major
rework of in the application layer.

Windows Communication Foundation (WCF)
In a Service-oriented architecture (SOA), where the functionality is split
up to a number of different services, puts great demand on the inte-
gration. WCF is a framework to simplify and unify different kind of
communication.

Windows Workflow Foundation (WF)
With WF the program is design in a flowchart, the different building
blocks is called activities. Some examples of activities: ForEach, Re-
ceiveMessage and Sequence. If these standard activities does not fit;
there is a possibility to create custom activities. When the program is
executed the WF-engine takes care of initializing, threading and holding

9

the different states of the program.

Windows Presentation Foundation (WPF)
In modern application there is a need for more advanced graphics, with
WPF is it possible to create 3D-graphics, Vector-graphics and anima-
tions. Underlaying implementation is based around Extensible Applica-
tion Markup Language (XAML) to describe the layout and forms.

3.2 Comparison between C# and Java

3.2.1 Some examples of differences in syntax

Description C# Java

Call the base-class’s constructor Base() super()

Convert a string (s) to integer int.Parse(s) Integer.parseInt(s)

Declaration of a constant const double
PI=3.14

final double
PI=3.14

Foreach-loop foreach(int i in
numArray) {
sum += i; }

for(int i : numAr-
ray) { sum += i; }

As shown in above examples there are some minor changes in syntax.
One thing to notice is that method-names begins with a capital letter,
the opposite to the Java Code Convention.[5]

3.2.2 Some useful features missing in Java

Operator Overloading With operator overloading it is possible to change
the behavior of these operators:
Unary operators: +, -, !, ~, ++, --, true, false

Binary operators: +, -, *, /, %, &, |, ^, <<,>>,==, ! =, >,<
,>=, <=

10

Implicit and explicit cast
In C# it is possible to define how the cast between different classes should
be handled. This is an explicit cast: byte b=32; int i=(int)b; and
implicit: byte b=32; int i=b;. In listing 3 there is an example which
shows some of the possibilities with this constructs. This example shows
how two unrelated classes (no common base-class) can be converted

Listing 1: Example of Implicit cast:

c l a s s Volvo {
pub l i c s t r i n g name ;
pub l i c Volvo (s t r i n g va l) {

name= val ;
}
pub l i c stat ic i m p l i c i t operator SodaCan (Volvo car)
{

return new SodaCan (”Coca co l a : now with g a s o l i n e
f l a v o r ”) ;

}
}
c l a s s SodaCan {

pub l i c s t r i n g name ;
pub l i c SodaCan (s t r i n g va l) {

name= val ;
}

}
c l a s s myProgram {

stat ic void Main () {
Volvo v = new Volvo (”S60”) ;
System . Console . WriteLine (”Our car : ” + v . name) ;
SodaCan spec i a lSoda = v ;
System . Console . WriteLine (”Our s p e c i a l soda

f l a v o r : ” + spec i a lSoda . name) ;
}

}

Properties
To access variables in an object there is two common variants; pub-
lic member (obj.name) or private member with an access-method
(obj.getName() and obj.setName(string s)). With the latter the as-
signment can be made more safe with validation of the new name for
an example make sure there is not another object with the same name.

11

In C# there is something called properties for this. The programmer
declares get and set methods for the member and the result is as simple
syntax as with a public member and the flexibility as with the handmade
access-method.

12

4 Mono

Mono is an open source implementation of Microsoft’s .NET Framework.
Its goal was to embrace a successful, standardized software platform to
lower the barriers when producing software for the Linux platform.[6]
The Mono project was started in 2001 with the first public release in
2004. Since then Mono has developed rapidly, possibly because economic
support from Novell. Mono can be run on a wide variety of systems
including the three main desktop OS’s: Linux, Windows and Mac OSX.
The GUI systems for each OS platform has been ported to the others,
giving Mono developers the possibility to target the system of their choice
but still operate on the others.

4.1 Licensing

The Mono project uses four open source licenses for different parts of
the project. They are: Massachusetts Institute of Technology license
for the X Window system (MIT/X11), General Public License (GPL),
GNU Lesser General Public License 2.0 (LGPL) and Microsoft Permissive
License. GPL and LGPL are the least permissive and therefore are the
ones limiting the usage of the library. The Mono tools are licensed under
GPL while the runtime library is licensed under LGPL. This means the
Mono-library can be dynamically linked into commercial applications,
but modifications to any Mono code requires the changes to be made
open, unless a license from Novell is obtained.[7] The parts licensed with
Microsoft Permissive License are parts borrowed from the Microsoft Class
Library, released as open source by Microsoft.

4.2 Applications using Mono

Linux enthusiasts have a tendency to dismiss Microsoft technology as
well as other commercial technologies. Mono is therefore not widely
used in open source applications. Mono has another usage though, that
is business or commercial applications originally written for Windows
where the companies try to expand to the Mac or Linux platform. Three
popular applications and games are[8]:

13

• Electronic Arts’ The Sims 3.

• Lego’s Quest for R2-D2. - A game for iPhone.

• Tomboy - An open source desktop note-taking application for
GNU/Linux.

4.3 .NET compatibility

Having full compatibility between Mono and .NET is desirable from the
users perspective but as a result of the Mono project being open source,
the mono-team does not develop features they feel are less important.
This issue and that some features are simply not portable to other plat-
forms have affected the compatibility with .NET.

The official statement on Mono-version 2.8 is that it supports everything
in .NET 4.0 except: [9]

• WPF - Windows Presentation Foundation

• Entity Framework

• WF - Windows Workflow Foundation

• some parts of WCF - Windows Communication Foundation

With Mono-compatible code it is possible to compile code in either Mi-
crosoft’s or Mono’s compiler, on either Windows or Linux. Both of the
executables (or libraries) are portable to either runtime environment.[11].

4.3.1 MoMA-tool

One way to check if a .NET assembly is compatible with the Mono run-
time is to use ”Mono Migration Analyzer” - MoMA. This tools loads
a user specified assembly and tries to determine if it uses non mono-
compatible calls. MoMA is not perfect and might result in false positives
or pass unsupported code.[12]

14

5 Embedding Mono

Embedding is generally containing something in a surrounding mass but
the name can me misleading when it comes to embedding software. This
is because the embedded application still have full communication with
the world.

Embedding lets a host application start up another application which is
in some way incompatible with the host. This is achieved with the help of
an embedding library. Different libraries exist for different purposes. The
reason to embed applications is usually to take advantage of more modern
programming languages in older applications, to embed new parts of the
application is cheaper than rewriting the application in the new language.
Another reason is to use the best of two (or more) worlds by building
time-critical parts of an application in a low-level language and the rest
in a user friendly high-level language.

When embedding Mono code in native code the Mono runtime library
is used. The API consists of function calls to C code and usually look
like mono X get Y(X). The fact that the API consists of C calls makes
the usage of the API quite inelegant, the order in which commands are
executed is reversed compared to the today common object oriented style
of programming.

Listing 2: Object oriented vs Procedural:

//OOP
human . getAge ()

//Mono C−s t y l e (Procedura l)
method = GetMethod (”getAge”) ;
InvokeMethodOnObject (human , method) ;

Embedding the Mono runtime consists of various steps

• Compiling and linking with the Mono runtime

• Initializing the Mono runtime

• Calling managed code

• Optionally expose C++ code to the managed world

15

5.1 Compiling and linking

To compile an application to embed Mono the application has to be
linked with the Mono runtime libraries. The compiling and linking is as
usual. The flags returned by pkg-config –cflags mono needs to be given
to the compiler and pkg-config –libs mono to the linker.

5.1.1 Mono 2.8+

From Mono version 2.8 and forward the name to pkg-config is no longer
mono, but mono-2 instead. Also Mono does not link to GLib internally
anymore and the compiler flags have to be appended with GLib’s directo-
ries (when used), commonly: -I/usr/include/glib-2.0 and -I/usr/lib/glib-
2.0/include.

5.2 Initializing the runtime

The Mono runtime is initialized by a call to mono jit init(name).
The parameter is the name of the application domain. Application do-
mains are used to isolate multiple applications on a single Mono vir-
tual machine similar to processes in an operating system.[13] This call
will initialize the default framework version for the current Mono ver-
sion. The framework version can be specified to .NET 2.0 with a call
to mono jit init version(name, "v2.0.50727"). The initialization of
the Mono runtime is only allowed once per application. The initialization
calls return a pointer to an application domain.

When the application domain is open the actual C# code needs to
be loaded, this is achieved with a call to mono domain assembly

open(domain, name). The first parameter is the application domain
and the second the path and name to the assembly (dll) being loaded.
The call returns a reference to the assembly.

To be able to invoke member methods of a class in the assembly an in-
stance of the class needs to be created. An image is the component of
the assembly which holds the actual CIL code and can be extracted from
the assembly by calling mono assembly get image(assembly). With
the image and the knowledge of a class’ name and namespace the class

16

can be found with mono class from name(image, namespace, name).
A call to mono object new(domain, class) will create an object whose
definition is looked up using the class. The object is initialized by calling
the constructor, this is done like calling any other method and is de-
scribed in the following section. The name of the constructor is always
.ctor when embedding Mono.

5.3 Calling managed code

Invoking methods in the managed world requires a number of Mono run-
time calls. The class can be acquired as described in the previous section.
The class is needed when obtaining the method with mono class get

method from name(class, method name, num params). Calling man-
aged code is done with mono runtime invoke(method, object,

params, NULL). The parameters are the method to invoke, the object
to invoke it on and an array of pointers to the parameters to send to the
method.

5.4 Exposing C code to the managed world

Being able to call code in the managed world is useful but the true
power comes when the managed code can call back to the native
world. This is especially useful when the C# code uses threading
and wants to notify the C++ world of an occurring event later during
execution. Mono uses mono add internal call(csharp method name,

c function pointer) to create a connection from a C# method to a
function in C++. In C# the method has to be declared as:

[MethodImplAttribute(MethodImplOptions.InternalCall)]
static extern return type MethodName(...);

All calls to this method is now forwarded to the C++ code. The program-
mer has to make sure that the formal parameters are compatible between
the two connected functions since no parameter validation is performed.

17

6 WISE with Mono

This chapter describes the architecture and key components in the em-
bedding of Mono with WISE. The goal is to help further development by
giving a better understanding of the current solution.

Figure 3: Overview of communication between WISE and an embedded
driver.

The wrapper driver (”the wrapper”) is the main component developed
in this project. It, as well as WISE, is written in C++ while the driver
is written in C#. The driver can be a customers driver or the chat/test
drivers developed in this project. The wrapper exposes the same interface
to the driver as WISE exposes to it. Therefore, the driver is unaware
that it is not communicating directly with WISE. In C++ this interface
is called IWISEDriverSink and in C# INETWISEDriverSink. The sinks
are used when communication from right to left in the figure above. For
communication in the other direction another interface is used, the driver
interface. IWISEDriver in C++ and INETWISEDriverSink in C#. In the
current implementation the Mono runtime library is used in the wrapper
to communicate with the driver.

The wrapper driver is located in the middle of WISE and the loaded
C#-driver where it interprets calls from both directions. One problem
with the interpretation is to get a notice that something has happened
and another is to convert and transfer data.

6.1 Design

With a good high-level design the low-level implementation is much eas-
ier. The first phase of the high-level design was to understand how WISE
is designed and then create a checklist of the upcoming tasks.

18

When something is updated or in another way triggered in the WISE-
runtime, a notification-call is made to the driver. This can for example
be OnAddObject(params, ...), this gives some basic knowledge about
a new object that was created in the application database. To get the
actual object the driver calls back to WISE with the sink. One minimal
example of how to use the sink is presented in listing 3.

Listing 3: Example-code:

// Get the va lue o f the a t t r i b u t e wi th handle 161
// and type long from
// o b j e c t wi th handle 125
// in database wi th handle 101
long bValue = 0 ;
s ink−>GetAttr ibuteValue (101 , 125 , 161 , bValue) ;
p r i n t f (”%u\n” , bValue) ;

Figure 4 shows current high-level implementation and the classes used.
CMonoDriver receives calls from WISE, marshalls data with the help of
Marshall and passes it to the loaded C# driver (ChatDriver in this
example). Marshalling means converting something so it can be trans-
ported. This driver communicates with the system it is designed for (not
shown in figure). The C# driver uses CMonoWISEDriverSink to commu-
nicate back to the C++ world. MonoDriverCallbacks receives this data,
marshalls it with help of Marshall and calls the corresponding method
in WISE’s sink. The classes are explained in more detail further on in
this chapter.

Custom C# Helper library
A library in C# is developed alongside with the wrapper driver. This
library contains helper classes to make the marshalling easier as well as
the CMonoWISEDriverSink class. This library is referred to as the C#
helper library.

CMonoDriver
This class receives calls from WISE and passes them to the loaded
C# driver. In CMonoDriver there are 11 methods inherited from the
IWISEDriver interface, this is the interface used by WISE to communi-
cate with drivers.

The wrapper driver uses the same interface as normal drivers and the task
in all methods except OnInitialize and OnUninitialize is to receive
data from WISE, marshall it and pass it to the C# driver. Marshalling

19

Figure 4: High-level design: The arrows illustrates in what directions
the calls are made. Classes in they grey area is written in C#.

is forwarded to the Marshall class. OnInitialize reads settings from
the configuration files including what C# assembly (dll file) to load as
well as the search path to the Mono library. With this information the
virtual machine is started and initialized as described in section 5.2.

The wrapper driver is written in C++ and for C# to be able to communi-
cate back to C++ some specific code has to be written in C#, see section
5.4. The sink in the C# helper library contains this code and is loaded
by the wrapper driver to avoid exposing it to the customer. An identifier
to the current wrapper is also sent the sink to be used when the sink calls
back to C++. This sink is set to an attribute in the customers driver,
only the interface of the sink is shown to the customer. The methods in
this sink is connected to MonoDriverCallbacks in C++ as described in

20

section 5.4.

CMonoDriver stores the references to Mono’s virtual machine so the other
classes can reach it. Additionally OnInitialize finds all methods in
the customers driver and saves references to them to gain performance
during execution. OnUninitialize closes the C# driver and cleans up
the virtual machine.

MonoDriverCallbacks
This class contains 238 static methods used by the C# sink to commu-
nicate with C++. In every method the data from C# is marshalled and
forwarded to the WISE sink. Sometimes WISE is supposed to update pa-
rameters sent to it. In C# these parameters are sent as ref parameters.
When receiving ref parameters in MonoDriverCallbacks the parameter
is prefixed with an extra * (pointer). This results in that MonoObjects is
handled as a pointer-to-pointer variable and native data types is handled
as a pointer. This gives the programmer maximum flexibility and can ei-
ther assign a new object by dereferencing the pointer-to-pointer or simply
use the dereferenced pointer to get the address to the MonoObject.

WISE can run multiple drivers in the same runtime at once. This
affects the design of the wrapper in some aspects. static vari-
ables and methods will be shared between driver instances which also
means problems with thread synchronization. Static’s are avoided as
much as possible but is sometimes required as with the methods in
MonoDriverCallbacks. Since they are static the methods do not have
any reference to any running driver instance. This is solved with a static
pointer to a class (DriverInstances) which holds all driver instances.
MonoDriverCallbacks gets an identifier from the C# sink of what driver
instance to call. The identifier is used to get a pointer to the correct
instance from the static DriverInstances. This class is thread synchro-
nized with the help of synchronization classes from the WISE library.

Marshall
The Marshall class has a method for every data type that needs to be
marshalled. It is overloaded to work in both directions. For lists and
dictionaries template methods are used, this is because the marshalling
is very similar, only a single or few rows change between different data
types. Therefore these rows have been moved out to overloaded methods
so templating can be used. More about marshalling is found in the
following section.

21

6.2 Marshalling

To be able to transport data between the managed- and unmanaged-
environment some type of conversion is needed, this is called marshalling.
Some basic data types are marshalled automatically but more advanced
types requires to be manually handled by the programmer.

WISE on Windows already have C# driver support, this means Saab
already have data types in C# that are equivalents of the C++ types
handled by WISE. These types are found in the STS.WISE namespace.

This chapter discusses how marshalling is done in our wrapper driver.
First, common types are explained followed by WISE’s custom data
types.

6.2.1 Native data types

WISE uses 4 native data types: long, long long, unsigned char and
double. Additionally a type WISE HANDLE is used for storing ID’s. This
type is a type definition for a long and is treated in the same way as
a long. The data types have different sizes in C++ and C#. The C#
equivalent of C++ long is int and C++ long long is long. unsigned

char is stored as System.Byte in C#.

Depending on the context, data is marshalled in different ways. Usually
native data types do not need any marshalling, the only problem is to
make sure the data types in the two environments are of the same size and
have the same bit format. Floating point values have the same bit format
in both C++ and C#. The time when a native data type need marshalling
is when creating or reading the C# data type System.Object or when
accessing properties in classes. Sending or receiving these types through
parameters in function calls do not need any manual marshalling.

Objects of native data types from C# are accessed from C++ via the
MonoObject* type. To be able to read the value this object points to, it
has to be unboxed with the mono object unbox(MonoObject*) function,
properly typecasted and dereferenced, eg.

long k = *(long*)mono object unbox(mono object of long)

When creating a MonoObject* from native C++ data types the value

22

has to be boxed with mono value box(MonoDomain*, MonoClass*,

void*). The parameters are the domain, the C# data type class to
create and a pointer to the value being converted.

long k = 5;

mono value box(domain, mono get int class(), &k)

6.2.2 String

WISE uses std::wstring to store string data. The data type is usu-
ally wider than normal std::strings, each character is 2 bytes wide
on Windows[14] and 4 bytes wide on Unix-like systems.[15] In C# the
System.String class is used which is a UTF-16 formatted string.[16]

MonoString* is the unmanaged representation of the String managed
type. Since the wchar t’s size is different on different computer systems,
a type with a fixed size is used when sending and receiving data from
Mono. This is to enable both Windows and Linux compatibility.

The MonoString* is converted to a short int array by using the func-
tion mono string to utf16(MonoString*). From this a heap-allocated
wchar t array with dynamic length is constructed and populated with
the elements from the first array where each element is typecasted to
wchar t. This is later used in the constructor of std::wstring to create
the final WISE compliant string.

The process to create C# strings from C++ is very similar, only re-
versed. A short int array is populated from a std::wstring and used
in the function mono string from utf16(const short int*) to create
a MonoString*.

6.2.3 DateTime

For time and date representation WISE uses timeb. This is a standard-
ized type in C++. It has an attribute of type time t which contains the
number of seconds since 1970-01-01, also known as Unix time. timeb has
other attributes such as timezone but these are not used by WISE. In C#
the standard type for storing time and date is used, this type is called
System.DateTime. It contains a 64 bit integer where the two upper bits

23

have special meaning, they describe if the time should be interpreted
as local time or Coordinated Universal Time. The other 62 bits repre-
sent every 100 nanoseconds since the birth of Jesus Christ (0001-01-01
00:00:00).

To make sure that the DateTime is passed as a 64 bit integer, the method
ToBinary() is executed in C# before the DateTime gets passed to the
unmanaged method. The ToBinary() method returns the actual 64 bit
data inside the System.DateTime. The conversion between the two date
formats are as simple as making some calculations. To convert from
DateTime to time t the following lines of code is used (Listing 4):

Listing 4: DateTime to timeb:

long long datet ime ; // data from C#
long long unixtime ; // temp v a r i a b l e
timeb time ;

unixtime = (datet ime & 0x3FFFFFFFFFFFFFFFULL) /
10000000ULL − 62135596800ULL;

time . time = unixtime ;

This line filters out the least significant 62 bits, converts 100 nanoseconds
to seconds and subtracts the seconds between year 1 and 1970.

The conversion from timeb to DateTime is very similar. First do the math
from Unix time to 100 nanoseconds since year 1. This 64 bit integer value
is passed to the managed world and can be interpreted as a DateTime.

6.2.4 Vec3

WISE uses a class CWISEVec3 to store positional information. It is a
WISE specific class which consists of three doubles (v1, v2, v3) and
a 32 bit enum (compareAND, compareOR). The C# equivalent type is
STS.WISE.Vec3, a struct with the same attributes.

When embedding Mono, structs are passed by value and can therefore be
treated as the native types. The only problem is to create a compatible
container in C++ to hold the data. CWISEVec3 is not compatible because
it contains more additional information than the 4 data types. Therefore
a custom made struct MonoVec3 is used as intermediate storage. To

24

get the data into a CWISEVec3 a new object is created with the data as
parameters in the constructor.

CWISEVec3(monovec.v1, monovec.v2, monovec.v3, monovec.c);

When a C# struct contains strings or references to objects they have
to be read as MonoString*’s and MonoObject*’s respectively and mar-
shalled properly.

6.2.5 Blob

Blob stands for binary large object and is used by WISE to store in-
formation not being compatible or practical with the other types. In
C++ the type is named CWISEBlob, it is a class with an unsigned char

array, the size of the array as well as two std::wstrings. The strings
are used to describe the data by specifying mimetype and encoding. In
C# a class STS.WISE.Blob is used to store the same information. This
Blob uses the System.IO.MemoryStream class to hold the array.

Marshalling CWISEBlobs to Blobs consists of several steps. First the C#
helper library is accessed to get the class of the Blob implementation.
An object of this class is instantiated. The constructor of Blob takes
a byte array as well as the two describing strings, therefore a managed
array is constructed with the help of mono array new(domain, class,

size) . Instead of copying the unmanaged array element by element, a
low level memory copy is used. This will save a lot of overhead since the
managed world isn’t called on every element and is possible because both
of the arrays are stored sequential in the memory. The string conversion
is delegated to the string marshalling methods see section 6.2.2.

When converting Blobs to CWISEBlobs the properties of the class are
accessed and marshalled by forwarding the job to the appropriate meth-
ods. A CWISEBlob is created and its array is set with a memory copy in
the same way as describer in the previous paragraph.

6.2.6 Union

The WISE data type CWISEValueUnion is used for storing any of the
other data types, but a maximum of one object at a time. Saab has no

25

C# equivalent type but uses the System.Object which is the type all
objects in C# inherits from and can therefore hold any type of data.
In C++, assignment operators are used to enable what data types to
support. These sets the value as well as an enum which describes the
data type currently being stored.

The marshalling between CWISEValueUnion and Object is very straight
forward. When converting to Object the method GetValueType() in
CWISEValueUnion is called to determine the current type. After this a
switch statement evaluates the type and the correct marshalling method
is called.

The other way around the mono class get name(MonoClass*) is in-
voked to determine the type. When the type is known the marshalling
is delegated to the correct method for the current type.

6.2.7 Lists

Every WISE data type except Blob can be stored in a list. In
C++the std::list is used and in C# custom classes that extends the
System.Collections.Generic.List are used.

To extract the values from a C# list in C++ code we first create an
empty MonoArray. With this array as a parameter, the CopyTo method
is executed on the C# list. CopyTo will populate the array with the data
in the list. In the array the data is easily accessible with the Mono-API,
using methods like mono array addr or mono array get.

To marshall data back to managed code we loop over every object in the
native list, convert each value to a managed data type and execute the
managed command Add on the C# list with the converted value.

6.2.8 Dictionaries

System.Collections.Generic.Dictionary is the C# equivalent of
C++’s std::map, meaning that you can store a key with a specific
value. Dictionaries are used in two cases in WISE, when accessing
settings passed to the driver and when the driver uses the data type
AttributeGroup.

26

For the extraction from the C# object, is the solution very similar to the
one for lists. First all the keys and values are copied to an array by calling
the managed CopyTo method. Both keys and values are placed in the
array. A problem arises when using this method on dictionaries, keys and
values have different sizes. Therefore the mono array get method cannot
be used in the same way as with lists. The array can be interpreted
as an array of key/value pairs or as an array of plain data. Important
to know is that elements with a size smaller than the system pointer size
will be padded to the pointer size, eg. the managed type System.Byte.
If the array is interpreted as an array of plain data, a pointer can be used
to iterate through the array. It is up to the programmer to know how
many bytes each element is and to increase the pointer with the correct
size. Once an object has been retrieved from the array its marshalling
method is called and the result inserted in the C++data type.

For the marshalling in the other direction there is a problem in how to
create managed generic objects from C++.[17, 18] One solution is to use
a helper class in C# that have a field of the constructed type of generic.
This is the method used and the C# helper library is called to get the
class of the Dictionary and instantiate an object of this.

Another way to resolve the issue with creation of a generic class in un-
managed code is to define classes which implements the specific generic
structure.

When the object is created it is as simple as with the lists: we loop
through the unmanaged map, convert every key and value to the Mono
equivalent-class and then execute the Add method on the managed dic-
tionary with the key and value as parameters.

6.2.9 AttributeGroups

Attribute groups are a WISE data type that stores dictionaries of every,
known by WISE, data type. The class in C++ is CWISEAttributeGroup
and the C# equivalent is STS.WISE.AttributeGroup.

The marshalling to C# consists of calling the C# helper library to get
the class definition of AttributeGroup and instantiate an object of this.
Thereafter go through every dictionary in CWISEAttributeGroup and
forward them to the dictionary marshalling methods. The same proce-

27

dure is used when converting from C#.

6.3 Templates

To be able to write as generic code as possible the Marshalling class
makes frequent use of template methods. A template method allows
a method to work on many different data types without having to be
rewritten for each type. This makes the maintenance of the code easier
as well as the risk of typing errors decreases. A drawback with this is the
somewhat increasing difficulty when debugging. When the same code
is used multiple times with different data types it’s harder to make the
application break at the desired point in execution.

Template methods are easy and powerful when the code is exactly the
same for the different data types. This is not always the case and there
is no straight forward way to create conditional statements to execute
different code paths depending on the current type. We solved this by
using overloaded methods as well as template specialisations. By using
overloaded methods for marshalling single data types the template meth-
ods can call the overloaded methods which contains the unique code for
each data type. Template specialisations works in the same way, except
they are used when the formal parameters to the overloaded methods
can’t be distinguished from another.

Template methods in C++ has a limitation: both the declaration and
definition has to be visible when compiling the calls to template methods.
This is usually solved by declaring and defining the templates at the
same time in the class’ header file. However, this was not possible in
our case because we are required to use forward declarations. Forward
declarations declares an identifier (variable name) to be defined later (or
somewhere else). Our template methods use this variable and just the
declaration is not enough to compile. The problem was solved by creating
another header file containing the definitions for the templates, this was
included in the cpp-file calling the template methods. The original header
file with template declarations was included from the cpp’s corresponding
header file. This way only the declarations are seen from the header file
while both the declarations and definitions are seen from the cpp-file, as
shown in Figure 5.

28

Figure 5: How template methods can be used in an environment where
circular dependencies exist. Arrows show include paths. This way will
never TemplateFunction be redefined.

6.4 Evaluation of Mono versions

The initial version chosen was the latest long-term supported. This was
version 2.6.7 during this project. Problems were experienced quite early
with this version on Windows. The mono jit cleanup-function always
crashed when embedding Mono in WISE. The second version evaluated
was Mono 2.10.1 this was the latest stable version at the time. No prob-
lems has come to our attention with this version on Windows.

One problem still exists on Linux, this is a problem with restarting the
driver through the interface of the WISE runtime. Doing this causes
a segmentation fault. This problem exists with both version 2.6.7 and
2.10.1 and does not seem to be related to the version used. We have
tested this without the involvement of WISE and the problem persists.
This might be a problem with the Linux architecture since restarting
works on Windows.

The conclusion is that Mono version 2.10.1 is the one to use with WISE.

29

6.5 Garbage collection

Many modern languages come with a garbage collector (GC). The
garbage collector takes care of the deallocation of objects for the pro-
grammer. With a garbage collector there should not be any problems
with common memory management errors like double free, memory leaks
or premature free. In the early days of garbage collection there were a
significant trade-off between the convenience of a garbage collected pro-
gram and the program’s efficiency. Today the algorithms have improved
and with the combination of more computing resources is this trade-off
much less of an issue.

6.5.1 Description of the Mono-GC

The current version of Mono (2.6.7 and 2.10.x) uses a garbage collector
based on ”Boehm’s Garbage Collector” by default. Boehm’s GC is by de-
fault a conservative GC, meaning it interprets every variable as a poten-
tial pointer to an object to check if every object is referenced. In Mono’s
implementation the collector instead uses precise mode for most of the
areas. With precise mode the GC only scans valid pointers for objects
to be deallocated. Other modifications include support for thread-local
storage (keep global data on a per thread basis) and concurrent garbage
collection.[20]

The garbage collector scans the following data areas: [21]

• The heap (where other managed objects are allocated)

• thread stacks and registers

• static data area

• data structures allocated by the runtime

6.5.2 API

To prevent objects from removal by the garbage collector the API offers
four different functions:[22]

30

Listing 5: GC Handles:

uint32 t mono gchandle new (MonoObject ∗obj ,
mono bool pinned) ;

uint32 t mono gchandle new weakref (MonoObject ∗obj ,
mono bool t r a c k r e s u r r e c t i o n) ;

MonoObject∗ mono gchand le ge t ta rget (uint32 t
gchandle) ;

void mono gchandle f ree (uint32 t gchandle) ;

The function mono gchandle new(...) flags the object to the GC that
it should not remove this object, the return value is used for identification
towards the GC. The parameter ”pinned” defines if the GC is allowed
to move the object to a different location on the memory-heap. The dif-
ference between a weakref and a normal gchandle is that the weakref

does not prevent removal, it is just used to check if the object still ex-
ists or have been removed. mono gchandle get target(...) uses the
gchandle to receive the MonoObject. mono gchandle free(...) tells
the collector that the object should be treated as an ordinary object and
therefore possible for removal.

6.5.3 The wrapper driver implementation

A MonoObject created in C++ will not be collected by the GC as long
as the current function has not yet returned.[23] With the marshalling
implementation which delegates work down from advanced data types to
simple data types, objects might be collected before they are sent to C#.
The solution, as already pointed out, is to use mono gchandle new(...).
The bigger problem is to return the collection of the objects to the
garbage collector after the objects are referenced by C# code. All
gchandles have to be stored in some way to be able to be released later.
This is solved with a custom class which takes care of the gchandles

for us. The class is simple, it stores a stack with handled gchandles

and inserts a new object with the method add(...) and releases them
for collection with free(). An instance of this class is created be-
fore every marshalling and a reference to it is passed down the call
hierarchy to every marshall method, so each method can add its ob-
jects to the stack. The free method is called after the call to C# with
mono runtime invoke(...).

31

6.6 Threads

WISE creates a dynamic number of threads for communication with dif-
ferent drivers. For the Mono-runtime to work in a threaded environment
each thread needs to be registered to the runtime. This is done with
a call to mono thread attach(). This function checks if the thread is
already registered, so it is safe to call it multiple times with the same
thread. We have tested to attach the same thread up to a thousand times
without experiencing any problems.

6.7 Mono in multiple driver environments

WISE can run a multiple number of drivers in the same runtime at once.
For Mono to be compatible with this setup the initialization requires
some adjustments. Just calling mono jit init(...) from every driver
does not work. This call may only be called once in each runtime. With
the help of the static and thread-safe class DriverInstances we can
find out if our driver is the first instance, if so, call mono jit init(...).
Otherwise call mono domain create appdomain(..). This call will cre-
ate another domain inside the root domain.

6.8 Quality assurance

6.8.1 Test-driver

The test-driver developed is a special C#-driver where it is possible to
run automated tests for every new revision of the wrapper-driver. This
driver is multi-platform meaning it will run on both Linux and Windows
and test the wrapper-driver as well as testing Saab’s existing code for
running C# drivers on Windows.

The current implementation of the test-driver tests the most common
calls. With over 200 different calls in the sink-class the number of lines
needed to achieve a complete test-driver is rather extensive.

32

6.8.2 WISE Test Tool

Within the WISE product suite there is a graphical tool for testing,
called the WISE Test Tool. This tool connects through the debug-port
to the WISE Runtime Environment. With the connection set up it is
possible to monitor the databases, create objects, remove object and
create events. This GUI is extended with scripting-capabilities in the
Lua programming language, which makes it possible for more advanced
testing scenarios and automated testing. We used Test Tool together
with the test driver to verify that data sent from C# was successfully
received by WISE.

This tool is not available on Linux but can connect through a socket to
a Linux-machine.

6.8.3 Chat-driver

Another way to verify that the wrapper-driver behaves as it is designed,
is to create a simple but proper implementation of a driver. To verify
the core functionality of WISE a chat-system is a good choice. In the
chat-system users are represented as objects and messages as events.

In our implementation the driver communicates over a TCP-connection
between the user interface and WISE. This protocol is as simple as it
can get, first there is an enum, called command, after that the name of
the user and last extra data for example the actual message. Every field
have a dynamic length and separated with a special character, the end
of the data is recognized with an end-of-transmission character (ASCII
code: 0x04).

6.9 Platform/Deployment

6.9.1 Deployment

One common problem with software development is that a program works
fine in the development environment but as soon as it gets deployed, some
things do not work as expected. This chapter will try to eliminate this
problem.

33

The first thing to do with a new environment is to install WISE and all
its dependencies. Ensure Saab.Mono.dll and MonoCSharp.dll are located
in the WISE/bin/-folder. Install and configure Mono as described in the
following table:

Linux (Ubuntu) Windows (XP)

Installer package mono-runtime 2.10.1-
5ubuntu3 i386.deb

mono-2.10.1-gtksharp-
2.12.10-win32-2.exe

PATH (Environ-
ment variable)

no adjustments needed C:\Program Files\Mono
-2.10.1\bin\

6.9.2 64-bit systems

For the driver to work in a 64bits environment some adjustments have
to be made. The WISE-platform uses long as an equivalent to 32bits
integer, this is not true on *nix where they are 64bits. These variables
need to be changed to int32 t instead. Another positive side effect
would be that C# long (64bits) does not get mixed up with the native
long.

With the change of pointer size on 64bits-systems some marshalling-
methods might need adjustments.

Saab currently has no plans to compile WISE as native 64bits binaries.

34

7 Conclusion

The wrapper driver developed during this thesis enables drivers written
in C# to communicate with WISE on both Linux and Windows based
operating systems. Developing new drivers in C# is generally easier and
faster than programming the driver in C++, this speeds up the process of
building new drivers, and saves money for both Saab and its customers.
Our wrapper driver have reached a high level of functionality and can be
used in current condition. Saab have plans to release our wrapper in one
of the upcoming releases of WISE.

The quality in the wrapper driver have been assured with the help of
the C# drivers we have developed. Our C# drivers have helped us find
problems in the implementation of the wrapper driver. The test driver
was used to send data types from C# into WISE. With this we could
quality asure the marshalling part of the wrapper. This is not a com-
plete test of the wrapper and another driver was developed to test more
functionality, this was the chat driver. The chat driver behaves more like
a potential future driver and test other calls in the sink than the test
driver. The combination of the two creates a good test to assure quality
in the wrapper. The chat driver also functioned as a demonstration of
our work to those unversed in our project.

7.1 Thesis reflection

The method for this project did help us with some structure especially
during the beginning. The early research did pay off later on with
the WISE-implementation. With the basic knowledge of how Mono-
embedding worked the work could be focused upon the WISE integra-
tion. The second phase took a lot more time than our early estimates
and the third phase did suffer to some extent. The reason for this was the
higher demands from Saab in functionality in the wrapper driver than
we originally thought.

The current status of the wrapper is full support for all methods and data
types in WISE, but one issue remain, the restart-issue is unresolved.
Mono seems to not cleanup all its resources during an unload of the
Mono-runtime with the result that a new runtime will not start. One
solution for this is tighter integration with WISE, with the result that

35

the machine does not get teared down with a driver unload. Instead only
unload the domain for that driver and the Mono-runtime remain alive
until WISE receives an exit signal.

As a whole we are pleased with Mono and were surprised how feature-
complete it was. The team of Novell-developers and driven individuals
have made a good job. During this project the conditions for Mono
development have changed, Attachmate, Novell’s parent company, did
layoff all of their Mono-developers. Attachmate claims that they are still
committed to Mono-development, but the future is definitely uncertain
for Mono. The major issue we found during this project was the lack
of documentation. There is some documentation on the website but for
the most part is it not explaining any functionality, just showing the
function-name and the parameters. This resulted to a trial and error
approach and a couple of e-mails to the developers mailing list.

36

8 Future development

This chapter describes further improvements that can be made with the
wrapper driver and some guidelines on how to implement new features.

8.1 Potential performance improvements

Most of the needed mono-methods are stored in a couple of std::map’s
for fast execution. This could be expanded in the future if a performance
hit is noticed in current implementation.

Methods for calls to the constructor on different objects are not
stored. Constructors are called in two ways, with the wrapper
mono runtime object init(obj) and with a ordinary lookup with
mono class get method from name(...) with the name .ctor. The
wrapper does the same thing but does not handle parameters for the
constructor.

Another place where caching is not implemented is some Add- and
CopyTo-methods located in the MonoDriverCallbacks- and Marshall-
class.

Both marshall methods for List and Dictionary currently use the
CopyTo-method. By using this method the data is copied one extra
time compared to reading it directly. This is unnecessary if the API
gets extended or a method which uses the Enumerator (C# version of
C++ iterator) can be used and loop directly over the elements.

8.2 New methods in the sink

To add new methods in the sink there are three different locations to
make adjustments:

In the class CMonoDriver located in MonoDriver.cpp/h, the internal call
have to be registered to the runtime.

In MonoDriverCallbacks.cpp/h the new method needs to be declared and
call marshalling of the data that is to be passed in to the WISE-sink.

37

In CMonoWISEDriverSink.cs the updated interface, which should have
triggered the whole process, have to be implemented with a secondary
wrapper method that links the correct method in MonoDriverCallbacks.

To verify that everything works as it should, some new test-cases could
be implemented in the test-driver.

8.3 Design improvements

There are some marshalling-methods that could be merged into a tem-
plate method instead. This would lead to less duplication of code.

The marshalling of dictionaries from C# can be changed to make the code
easier to maintain and understand. Currently the array is interpreted as
an array of plain data, interpreting it as an array of key/value pairs as
described in section 6.2.8 would make the code easier to understand.

In MonoDriverCallbacks is every method from the sink implemented for
every possible data type. This could be changed so methods accept sev-
eral data types. This would decrease the number of methods to maintain
in MonoDriverCallbacks.

8.4 Upcoming mono versions

The Mono developers are currently working on a new garbage
collector.[24] The big feature in the new one is the copying/moving oper-
ation. This operation uses a similar operation as a disk defragmentation-
tool it tries to compact the objects so there is not any memory holes after
removed objects. The negative thing about this operation is that point-
ers to moved objects will be broken. This might have a negative impact
on the current marshalling-implementation.

38

References

[1] Saab in brief.
http://www.saabgroup.com/About-Saab/Company-profile/

Saab-in-brief/. [2011-05-09].

[2] WISE Connectivity.
http://www.saabgroup.com/en/Land/Training_and_

Simulation/Virtual-Constructive-Integration/WISE_

Connectivity/. [2011-05-09].

[3] .NET Framework: Overview.
http://www.microsoft.com/net/overview.aspx. [2011-05-09].

[4] .NET Framework Conceptual Overview.
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx.
[2011-05-09].

[5] Code Conventions for the Java(TM) Programming Language.
http://www.oracle.com/technetwork/java/

codeconvtoc-136057.html [2011-05-09].

[6] What is Mono - Mono.
http://mono-project.com/What_is_Mono. [2011-03-04].

[7] FAQ: Licensing - Mono
http://mono-project.com/FAQ:_Licensing. [2011-03-04].

[8] Software - Mono.
http://mono-project.com/Software. [2011-04-28].

[9] Compatibility - Mono.
http://go-mono.com/Compatibility. [2011-04-28].

[10] Mono - Class Status pages.
http://go-mono.com/status/. [2011-04-26].

[11] Justin. (March 2011). C# - How does Mono work - Stack Overflow.
http://stackoverflow.com/questions/216841/

how-does-mono-work. [2011-03-04].

39

http://www.saabgroup.com/About-Saab/Company-profile/Saab-in-brief/
http://www.saabgroup.com/About-Saab/Company-profile/Saab-in-brief/
http://www.saabgroup.com/en/Land/Training_and_Simulation/Virtual-Constructive-Integration/WISE_Connectivity/
http://www.saabgroup.com/en/Land/Training_and_Simulation/Virtual-Constructive-Integration/WISE_Connectivity/
http://www.saabgroup.com/en/Land/Training_and_Simulation/Virtual-Constructive-Integration/WISE_Connectivity/
http://www.microsoft.com/net/overview.aspx
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://mono-project.com/What_is_Mono
http://mono-project.com/FAQ:_Licensing
http://mono-project.com/Software
http://go-mono.com/Compatibility
http://go-mono.com/status/
http://stackoverflow.com/questions/216841/how-does-mono-work
http://stackoverflow.com/questions/216841/how-does-mono-work

[12] MoMA - Mono.
http://www.mono-project.com/Moma. [2011-04-28].

[13] Mono Documentation.
http://www.go-mono.com/docs/. [2011-05-25].

[14] wchar t Attribute (Windows).
http://msdn.microsoft.com/en-us/library/aa367308.aspx.
[2011-05-25].

[15] Re: sizeof wchar t.
http://gcc.gnu.org/ml/gcc/1998-08/msg00747.html. [2011-05-
25].

[16] String Class (System).
http://msdn.microsoft.com/en-us/library/system.string.

aspx. [2011-05-25].

[17] Robert Jordan.
http://go-mono.com/forums/#nabble-td1505983. [2011-04-27].

[18] Robert Jordan.
http://go-mono.com/forums/#nabble-td1538089. [2011-04-27].

[19] Embedding Mono.
http://www.mono-project.com/Embedding_Mono. [2011-04-26].

[20] .net - How is the current performance of the Mono virtual machine?
- Stack overflow.
http://stackoverflow.com/questions/1150002/

how-is-the-current-performance-of-the-mono-virtual-machine.
[2011-05-25].

[21] Mono:Runtime - Mono.
http://www.mono-project.com/Mono:Runtime. [2011-05-12].

[22] Mono Documentation - GC Handles.
http://www.go-mono.com/docs/index.aspx?link=xhtml%

3adeploy%2fmono-api-gchandle.html. [2011-05-11].

[23] Paolo Molaro.
http://go-mono.com/forums/#nabble-td1530913. [2011-05-24].

[24] Mono - Generational GC.
http://www.mono-project.com/Generational_GC. [2011-05-09].

40

http://www.mono-project.com/Moma
http://www.go-mono.com/docs/
http://msdn.microsoft.com/en-us/library/aa367308.aspx
http://gcc.gnu.org/ml/gcc/1998-08/msg00747.html
http://msdn.microsoft.com/en-us/library/system.string.aspx
http://msdn.microsoft.com/en-us/library/system.string.aspx
http://go-mono.com/forums/#nabble-td1505983
http://go-mono.com/forums/#nabble-td1538089
http://www.mono-project.com/Embedding_Mono
http://stackoverflow.com/questions/1150002/how-is-the-current-performance-of-the-mono-virtual-machine
http://stackoverflow.com/questions/1150002/how-is-the-current-performance-of-the-mono-virtual-machine
http://www.mono-project.com/Mono:Runtime
http://www.go-mono.com/docs/index.aspx?link=xhtml%3adeploy%2fmono-api-gchandle.html
http://www.go-mono.com/docs/index.aspx?link=xhtml%3adeploy%2fmono-api-gchandle.html
http://go-mono.com/forums/#nabble-td1530913
http://www.mono-project.com/Generational_GC

Dictionary

Assembly Container (.dll or .exe) for Managed code.

CIL Common Intermediate Language, a common lan-
guage Managed code is copiled into.

CLR Common Language Runtime, the runtime which
executes CIL code.

GC Short for garbage collector.

GCC GNU Compiler Collection.

GPL GNU General Public License.

LGPL GNU Lesser General Public License.

Marshalling In this context: conversion between data types
from different environments (C++and C#).

Managed code Code that runs on the CLR VM (Mono runtime,
C#-code).

Unix time Number of seconds since midnight 1970-01-01.

Unmanaged code Native code (C++).

41

	Introduction
	Background
	Scope
	Goals
	Scope Details
	Acceptance requirements

	Method
	Phase 1
	Phase 2
	Phase 3
	Source criticism

	WISE Connectivity
	WISE vs. conventional integration
	WISE components

	Microsoft .NET Framework
	Some components in .NET
	Comparison between C# and Java
	Some examples of differences in syntax
	Some useful features missing in Java

	Mono
	Licensing
	Applications using Mono
	.NET compatibility
	MoMA-tool

	Embedding Mono
	Compiling and linking
	Mono 2.8+

	Initializing the runtime
	Calling managed code
	Exposing C code to the managed world

	WISE with Mono
	Design
	Marshalling
	Native data types
	String
	DateTime
	Vec3
	Blob
	Union
	Lists
	Dictionaries
	AttributeGroups

	Templates
	Evaluation of Mono versions
	Garbage collection
	Description of the Mono-GC
	API
	The wrapper driver implementation

	Threads
	Mono in multiple driver environments
	Quality assurance
	Test-driver
	WISE Test Tool
	Chat-driver

	Platform/Deployment
	Deployment
	64-bit systems

	Conclusion
	Thesis reflection

	Future development
	Potential performance improvements
	New methods in the sink
	Design improvements
	Upcoming mono versions

	References
	Dictionary

